Copied to
clipboard

G = C2×C23.21D10order 320 = 26·5

Direct product of C2 and C23.21D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C23.21D10, C24.68D10, (C22×C20)⋊27C4, (C23×C4).12D5, C10.64(C23×C4), (C23×C20).17C2, C4⋊Dic583C22, (C22×C4)⋊10Dic5, C105(C42⋊C2), C2.5(C23×Dic5), C20.240(C22×C4), (C2×C20).885C23, (C2×C10).284C24, (C4×Dic5)⋊81C22, (C22×C4).448D10, C23.36(C2×Dic5), C4.39(C22×Dic5), C22.41(C23×D5), C22.80(C4○D20), C23.232(C22×D5), (C22×C20).547C22, (C22×C10).413C23, (C23×C10).106C22, (C2×Dic5).288C23, C23.D5.144C22, C22.31(C22×Dic5), (C22×Dic5).252C22, (C2×C20)⋊50(C2×C4), C56(C2×C42⋊C2), (C2×C4×Dic5)⋊37C2, C2.5(C2×C4○D20), (C2×C4⋊Dic5)⋊50C2, C10.60(C2×C4○D4), (C2×C4)⋊11(C2×Dic5), (C2×C4).829(C22×D5), (C2×C23.D5).26C2, (C2×C10).111(C4○D4), (C2×C10).309(C22×C4), (C22×C10).211(C2×C4), SmallGroup(320,1458)

Series: Derived Chief Lower central Upper central

C1C10 — C2×C23.21D10
C1C5C10C2×C10C2×Dic5C22×Dic5C2×C4×Dic5 — C2×C23.21D10
C5C10 — C2×C23.21D10
C1C22×C4C23×C4

Generators and relations for C2×C23.21D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=d, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, ce=ec, cf=fc, de=ed, df=fd, fef-1=e9 >

Subgroups: 734 in 330 conjugacy classes, 207 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C23×C4, C2×Dic5, C2×Dic5, C2×C20, C22×C10, C22×C10, C22×C10, C2×C42⋊C2, C4×Dic5, C4⋊Dic5, C23.D5, C22×Dic5, C22×C20, C22×C20, C23×C10, C2×C4×Dic5, C2×C4⋊Dic5, C23.21D10, C2×C23.D5, C23×C20, C2×C23.21D10
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, C4○D4, C24, Dic5, D10, C42⋊C2, C23×C4, C2×C4○D4, C2×Dic5, C22×D5, C2×C42⋊C2, C4○D20, C22×Dic5, C23×D5, C23.21D10, C2×C4○D20, C23×Dic5, C2×C23.21D10

Smallest permutation representation of C2×C23.21D10
On 160 points
Generators in S160
(1 36)(2 37)(3 38)(4 39)(5 40)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(41 64)(42 65)(43 66)(44 67)(45 68)(46 69)(47 70)(48 71)(49 72)(50 73)(51 74)(52 75)(53 76)(54 77)(55 78)(56 79)(57 80)(58 61)(59 62)(60 63)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 150)(122 151)(123 152)(124 153)(125 154)(126 155)(127 156)(128 157)(129 158)(130 159)(131 160)(132 141)(133 142)(134 143)(135 144)(136 145)(137 146)(138 147)(139 148)(140 149)
(1 115)(2 116)(3 117)(4 118)(5 119)(6 120)(7 101)(8 102)(9 103)(10 104)(11 105)(12 106)(13 107)(14 108)(15 109)(16 110)(17 111)(18 112)(19 113)(20 114)(21 100)(22 81)(23 82)(24 83)(25 84)(26 85)(27 86)(28 87)(29 88)(30 89)(31 90)(32 91)(33 92)(34 93)(35 94)(36 95)(37 96)(38 97)(39 98)(40 99)(41 143)(42 144)(43 145)(44 146)(45 147)(46 148)(47 149)(48 150)(49 151)(50 152)(51 153)(52 154)(53 155)(54 156)(55 157)(56 158)(57 159)(58 160)(59 141)(60 142)(61 131)(62 132)(63 133)(64 134)(65 135)(66 136)(67 137)(68 138)(69 139)(70 140)(71 121)(72 122)(73 123)(74 124)(75 125)(76 126)(77 127)(78 128)(79 129)(80 130)
(1 95)(2 96)(3 97)(4 98)(5 99)(6 100)(7 81)(8 82)(9 83)(10 84)(11 85)(12 86)(13 87)(14 88)(15 89)(16 90)(17 91)(18 92)(19 93)(20 94)(21 120)(22 101)(23 102)(24 103)(25 104)(26 105)(27 106)(28 107)(29 108)(30 109)(31 110)(32 111)(33 112)(34 113)(35 114)(36 115)(37 116)(38 117)(39 118)(40 119)(41 124)(42 125)(43 126)(44 127)(45 128)(46 129)(47 130)(48 131)(49 132)(50 133)(51 134)(52 135)(53 136)(54 137)(55 138)(56 139)(57 140)(58 121)(59 122)(60 123)(61 150)(62 151)(63 152)(64 153)(65 154)(66 155)(67 156)(68 157)(69 158)(70 159)(71 160)(72 141)(73 142)(74 143)(75 144)(76 145)(77 146)(78 147)(79 148)(80 149)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 76 85 155)(2 65 86 144)(3 74 87 153)(4 63 88 142)(5 72 89 151)(6 61 90 160)(7 70 91 149)(8 79 92 158)(9 68 93 147)(10 77 94 156)(11 66 95 145)(12 75 96 154)(13 64 97 143)(14 73 98 152)(15 62 99 141)(16 71 100 150)(17 80 81 159)(18 69 82 148)(19 78 83 157)(20 67 84 146)(21 58 110 131)(22 47 111 140)(23 56 112 129)(24 45 113 138)(25 54 114 127)(26 43 115 136)(27 52 116 125)(28 41 117 134)(29 50 118 123)(30 59 119 132)(31 48 120 121)(32 57 101 130)(33 46 102 139)(34 55 103 128)(35 44 104 137)(36 53 105 126)(37 42 106 135)(38 51 107 124)(39 60 108 133)(40 49 109 122)

G:=sub<Sym(160)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(41,64)(42,65)(43,66)(44,67)(45,68)(46,69)(47,70)(48,71)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,61)(59,62)(60,63)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,141)(133,142)(134,143)(135,144)(136,145)(137,146)(138,147)(139,148)(140,149), (1,115)(2,116)(3,117)(4,118)(5,119)(6,120)(7,101)(8,102)(9,103)(10,104)(11,105)(12,106)(13,107)(14,108)(15,109)(16,110)(17,111)(18,112)(19,113)(20,114)(21,100)(22,81)(23,82)(24,83)(25,84)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(37,96)(38,97)(39,98)(40,99)(41,143)(42,144)(43,145)(44,146)(45,147)(46,148)(47,149)(48,150)(49,151)(50,152)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(57,159)(58,160)(59,141)(60,142)(61,131)(62,132)(63,133)(64,134)(65,135)(66,136)(67,137)(68,138)(69,139)(70,140)(71,121)(72,122)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130), (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,81)(8,82)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,91)(18,92)(19,93)(20,94)(21,120)(22,101)(23,102)(24,103)(25,104)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(41,124)(42,125)(43,126)(44,127)(45,128)(46,129)(47,130)(48,131)(49,132)(50,133)(51,134)(52,135)(53,136)(54,137)(55,138)(56,139)(57,140)(58,121)(59,122)(60,123)(61,150)(62,151)(63,152)(64,153)(65,154)(66,155)(67,156)(68,157)(69,158)(70,159)(71,160)(72,141)(73,142)(74,143)(75,144)(76,145)(77,146)(78,147)(79,148)(80,149), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,76,85,155)(2,65,86,144)(3,74,87,153)(4,63,88,142)(5,72,89,151)(6,61,90,160)(7,70,91,149)(8,79,92,158)(9,68,93,147)(10,77,94,156)(11,66,95,145)(12,75,96,154)(13,64,97,143)(14,73,98,152)(15,62,99,141)(16,71,100,150)(17,80,81,159)(18,69,82,148)(19,78,83,157)(20,67,84,146)(21,58,110,131)(22,47,111,140)(23,56,112,129)(24,45,113,138)(25,54,114,127)(26,43,115,136)(27,52,116,125)(28,41,117,134)(29,50,118,123)(30,59,119,132)(31,48,120,121)(32,57,101,130)(33,46,102,139)(34,55,103,128)(35,44,104,137)(36,53,105,126)(37,42,106,135)(38,51,107,124)(39,60,108,133)(40,49,109,122)>;

G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(41,64)(42,65)(43,66)(44,67)(45,68)(46,69)(47,70)(48,71)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,61)(59,62)(60,63)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,141)(133,142)(134,143)(135,144)(136,145)(137,146)(138,147)(139,148)(140,149), (1,115)(2,116)(3,117)(4,118)(5,119)(6,120)(7,101)(8,102)(9,103)(10,104)(11,105)(12,106)(13,107)(14,108)(15,109)(16,110)(17,111)(18,112)(19,113)(20,114)(21,100)(22,81)(23,82)(24,83)(25,84)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(37,96)(38,97)(39,98)(40,99)(41,143)(42,144)(43,145)(44,146)(45,147)(46,148)(47,149)(48,150)(49,151)(50,152)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(57,159)(58,160)(59,141)(60,142)(61,131)(62,132)(63,133)(64,134)(65,135)(66,136)(67,137)(68,138)(69,139)(70,140)(71,121)(72,122)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130), (1,95)(2,96)(3,97)(4,98)(5,99)(6,100)(7,81)(8,82)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,91)(18,92)(19,93)(20,94)(21,120)(22,101)(23,102)(24,103)(25,104)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(41,124)(42,125)(43,126)(44,127)(45,128)(46,129)(47,130)(48,131)(49,132)(50,133)(51,134)(52,135)(53,136)(54,137)(55,138)(56,139)(57,140)(58,121)(59,122)(60,123)(61,150)(62,151)(63,152)(64,153)(65,154)(66,155)(67,156)(68,157)(69,158)(70,159)(71,160)(72,141)(73,142)(74,143)(75,144)(76,145)(77,146)(78,147)(79,148)(80,149), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,76,85,155)(2,65,86,144)(3,74,87,153)(4,63,88,142)(5,72,89,151)(6,61,90,160)(7,70,91,149)(8,79,92,158)(9,68,93,147)(10,77,94,156)(11,66,95,145)(12,75,96,154)(13,64,97,143)(14,73,98,152)(15,62,99,141)(16,71,100,150)(17,80,81,159)(18,69,82,148)(19,78,83,157)(20,67,84,146)(21,58,110,131)(22,47,111,140)(23,56,112,129)(24,45,113,138)(25,54,114,127)(26,43,115,136)(27,52,116,125)(28,41,117,134)(29,50,118,123)(30,59,119,132)(31,48,120,121)(32,57,101,130)(33,46,102,139)(34,55,103,128)(35,44,104,137)(36,53,105,126)(37,42,106,135)(38,51,107,124)(39,60,108,133)(40,49,109,122) );

G=PermutationGroup([[(1,36),(2,37),(3,38),(4,39),(5,40),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(41,64),(42,65),(43,66),(44,67),(45,68),(46,69),(47,70),(48,71),(49,72),(50,73),(51,74),(52,75),(53,76),(54,77),(55,78),(56,79),(57,80),(58,61),(59,62),(60,63),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,150),(122,151),(123,152),(124,153),(125,154),(126,155),(127,156),(128,157),(129,158),(130,159),(131,160),(132,141),(133,142),(134,143),(135,144),(136,145),(137,146),(138,147),(139,148),(140,149)], [(1,115),(2,116),(3,117),(4,118),(5,119),(6,120),(7,101),(8,102),(9,103),(10,104),(11,105),(12,106),(13,107),(14,108),(15,109),(16,110),(17,111),(18,112),(19,113),(20,114),(21,100),(22,81),(23,82),(24,83),(25,84),(26,85),(27,86),(28,87),(29,88),(30,89),(31,90),(32,91),(33,92),(34,93),(35,94),(36,95),(37,96),(38,97),(39,98),(40,99),(41,143),(42,144),(43,145),(44,146),(45,147),(46,148),(47,149),(48,150),(49,151),(50,152),(51,153),(52,154),(53,155),(54,156),(55,157),(56,158),(57,159),(58,160),(59,141),(60,142),(61,131),(62,132),(63,133),(64,134),(65,135),(66,136),(67,137),(68,138),(69,139),(70,140),(71,121),(72,122),(73,123),(74,124),(75,125),(76,126),(77,127),(78,128),(79,129),(80,130)], [(1,95),(2,96),(3,97),(4,98),(5,99),(6,100),(7,81),(8,82),(9,83),(10,84),(11,85),(12,86),(13,87),(14,88),(15,89),(16,90),(17,91),(18,92),(19,93),(20,94),(21,120),(22,101),(23,102),(24,103),(25,104),(26,105),(27,106),(28,107),(29,108),(30,109),(31,110),(32,111),(33,112),(34,113),(35,114),(36,115),(37,116),(38,117),(39,118),(40,119),(41,124),(42,125),(43,126),(44,127),(45,128),(46,129),(47,130),(48,131),(49,132),(50,133),(51,134),(52,135),(53,136),(54,137),(55,138),(56,139),(57,140),(58,121),(59,122),(60,123),(61,150),(62,151),(63,152),(64,153),(65,154),(66,155),(67,156),(68,157),(69,158),(70,159),(71,160),(72,141),(73,142),(74,143),(75,144),(76,145),(77,146),(78,147),(79,148),(80,149)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,76,85,155),(2,65,86,144),(3,74,87,153),(4,63,88,142),(5,72,89,151),(6,61,90,160),(7,70,91,149),(8,79,92,158),(9,68,93,147),(10,77,94,156),(11,66,95,145),(12,75,96,154),(13,64,97,143),(14,73,98,152),(15,62,99,141),(16,71,100,150),(17,80,81,159),(18,69,82,148),(19,78,83,157),(20,67,84,146),(21,58,110,131),(22,47,111,140),(23,56,112,129),(24,45,113,138),(25,54,114,127),(26,43,115,136),(27,52,116,125),(28,41,117,134),(29,50,118,123),(30,59,119,132),(31,48,120,121),(32,57,101,130),(33,46,102,139),(34,55,103,128),(35,44,104,137),(36,53,105,126),(37,42,106,135),(38,51,107,124),(39,60,108,133),(40,49,109,122)]])

104 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I4J4K4L4M···4AB5A5B10A···10AD20A···20AF
order12···222224···444444···45510···1020···20
size11···122221···1222210···10222···22···2

104 irreducible representations

dim1111111222222
type+++++++-++
imageC1C2C2C2C2C2C4D5C4○D4Dic5D10D10C4○D20
kernelC2×C23.21D10C2×C4×Dic5C2×C4⋊Dic5C23.21D10C2×C23.D5C23×C20C22×C20C23×C4C2×C10C22×C4C22×C4C24C22
# reps12282116281612232

Matrix representation of C2×C23.21D10 in GL4(𝔽41) generated by

40000
04000
0010
0001
,
40000
0100
00400
0001
,
40000
0100
00400
00040
,
1000
0100
00400
00040
,
1000
0100
00210
00039
,
32000
04000
00039
00200
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,1,0,0,0,0,40,0,0,0,0,1],[40,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,21,0,0,0,0,39],[32,0,0,0,0,40,0,0,0,0,0,20,0,0,39,0] >;

C2×C23.21D10 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{21}D_{10}
% in TeX

G:=Group("C2xC2^3.21D10");
// GroupNames label

G:=SmallGroup(320,1458);
// by ID

G=gap.SmallGroup(320,1458);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,184,1123,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=d,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^9>;
// generators/relations

׿
×
𝔽